VAHIDULLAH TAC Machine Learning for Computational Mechanics

Research Interests: Senior PhD student working on applying novel machine learning techniques for solving problems in computational mechanics. I focus on integration of physical constraints in machine learning models, uncertainty quantification in data-driven models, supervised and unsupervised learning, generative AI and others for various problems in constitutive materials modeling.

			_			
-	וח		ΛТ	IN	NI	1
ᄂ	υ	ノし	4	IU	IN	

PhD	Purdue University, West Lafayette, IN
2021 - now	Mechanical Engineering
	Dissertation title: Data-driven modeling of elastic and inelastic processes
	Thesis advisor: Adrian Buganza Tepole
	Expected date of graduation: July 2024
MSc	Middle East Technical University, Ankara, Turkey
2016 - 2019	Aerospace Engineering
	Thesis title: Micromechanical modeling of carbon nanotube – polymer
	composites
BSc	Middle East Technical University, Ankara, Turkey
2012 - 2016	Aerospace Engineering
RESEARCH &	
EXPERIENCE	
Purdue University	Research Assistant
2021 - now	Conducted research into application of machine learning for solving problems
	in computational mechanics. Developed several models for mechanical
	phenomena such as hyperelasticity, viscoelasticity, continuum damage, and
	others. Developed an uncertainty quantification method for data-driven
	hyperelasticity using diffusion.
Stanford University	Visiting Researcher
$2024 - 2024 \ (2 \ mo)$	Conducted quantitative research on the concentration of tau and amyloid beta
	in the human brain.
Turkish Aerospace	Structural Design Engineer
Industries (TAI)	Designed various spacecraft parts such as structural panels, inserts and
2018 - 2021	brackets. Spearheaded the development of the first structural panel with
	embedded active cooling in TAI.
TUBITAK Space	Research Engineer
2017 - 2018	Designed and developed two engineering software packages for 1) aircraft
	conceptual design and 2) composite failure analysis as part of a highly dynamic
	team.

Awards & Honours

- Travel for Collaborative Research (TRACER) Award (\$10,000).
 From Purdue University, 2023. Used to travel to Stanford University for a 2-month collaboration.
- SES Travel Award (\$1,000) from Society of Engineering Science (SES) to attend the Inaugural SES Future Faculty Symposium, 2023.
- **Robert J. Melosh Medal** for best student paper in computational solid mechanics, Duke University, 2022.
- Ward A. Lambert Teaching Fellowship, Purdue University, 2022
- Ben M. Hillberry Graduate Scholarship (\$3,600), Purdue University, 2022.
- **TUBITAK Publication Award** for publishing an article in the Journal of Composite Materials, 2020.
- **3**rd **Place**, Individual Aircraft Design Competition 2015-16, American Institute of Aeronautics and Astronautics (AIAA).
- 1st Place, METU Engineering Day 2016 Poster Competition.
- **Study abroad scholarship** from the Ministry of Higher Education of Afghanistan for undergraduate studies.

PUBLICATIONS -

- [11] V. Tac and A. B. Tepole, "A Modeler's Guide to Soft Tissue Mechanics," in Comprehensive Mechanics of Materials (First Edition), V. Silberschmidt, Ed., Oxford: Elsevier, 2024.
- [10] V. Tac, E. Kuhl, and A. B. Tepole, "Data-driven continuum damage mechanics with built-in physics," Submitted, 2024.
- [9] L. Nunez Alvarez, J. Ledwon, S. Applebaum, B. Progri, T. Han, J. Laudo, V. Tac, A. Gosain, and A. B. Tepole, "*Tissue expansion mitigates radiation-induced skin fibrosis in a porcine model*," *Submitted*, 2024.
- [8] V. Tac, M. K. Rausch, I. Bilionis, F. S. Costabal and A. B. Tepole, "Generative hyperelasticity with physics-informed probabilistic diffusion fields," Submitted, 2023.
- [7] V. Tac, M. K. Rausch, F. S. Costabal and A. B. Tepole, "Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations," Computer Methods in Applied Mechanics and Engineering, 2023.
- [6] V. Tac, K. Linka, F. S. Costabal, E. Kuhl and A. B. Tepole, "Benchmarks for physics-informed data-driven hyperelasticity," Computational Mechanics, 2023.
- [5] V. Tac, F. S. Costabal, and A. B. Tepole, "Data-driven tissue mechanics with polyconvex neural ordinary differential equations," Computer Methods in Applied Mechanics and Engineering, 2022.

- [4] V. Tac, V. D. Sree, M. K. Rausch, and A. B. Tepole, "Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue," Engineering with Computers, 2022.
- [3] Y. Leng, V. Tac, S. Calve, and A. B. Tepole, "Predicting the mechanical properties of biopolymer gels using neural networks trained on discrete fiber network data," Computer Methods in Applied Mechanics and Engineering, 2021.
- [2] **V. Tac**, and E. Gürses, "Micromechanical modelling of carbon nanotube reinforced composite materials with a functionally graded interphase," Journal of Composite Materials, 2019.
- [1] W. Taj and D. Coker, "Dynamic frictional sliding modes between two homogenous interfaces", IOP Conference Series: Materials Science and Engineering, 2018.

TEACHING

ME 270 - StaticsLecturerFall 2023I was th

I was the instructor for one of the sections of ME 270 – Basic Mechanics I as part of the Ward A. Lambert Teaching Fellowship.

ME 270 - Statics Guest Lecturer

Spring 2023 I taught 3 sessions of the class in preparation for my Fall 2023 class.

TECHNICAL

SKILLS

- Python (Proficient in Jax and familiar with TensorFlow and PyTorch)
- Machine learning (Extensive experience with Neural ODEs and Diffusion)
- FORTRAN
- Finite Element Method
- Familiar with a variety of tools and languages such as Julia, MATLAB, C, HTML, IAT_EX and others.